High Speed Rail in Australia
High Speed Rail in Australia

Proposals / EOI’s / Studies

- 1980s – “VFT” Sydney – Canberra – Melbourne
- Early 1990s – “SpeedRail” Sydney – Canberra
- Late 1990s – VHST Competition Sydney – Canberra with 4 bidders
 - 200-250 km/h High Speed + Tilting Capability
 - 300-350 km/h Very High Speed Non Tilting
 - 500 km/h Maglev
- ARUP-TMG ECVHST Study 2001;
- Rail CRC Study 2009/2010;
- Infrastructure Partnerships Australia/AECOM Report
- September 2010 - Department of Infrastructure and Transport Internal Brief “A profile of high Speed railways”
- 2012 – Stage 2 study awarded
Key Study Objectives

- Is there a place in Australia’s transport strategy and policy for an East Coast VHST?
- To provide the Australian Government with an analysis of VHST potential, approaching the issue from a national benefit perspective and within a longer-term transport infrastructure context.
“…………an EC VHST could have a place in Australia’s transport future. The securing of that place, however, would be dependent on whether it can become an integral part of a vision and action plan for a new paradigm of development, mobility and transportation connectivity in the East Coast corridor.

If it does have a place, an EC VHST will not achieve it in the absence of political vision and leadership, long-term bipartisan political commitment, the full participation of all Governments and the collective will and skills of Australians.”

Full Report available at:
Japan in 1964
- Key Historical National Priorities

- Reduce energy consumption;
- Lessen dependence on imported oil;
- Create new development centres on a national economic spine;
- Reduce pressures on major cities by long distance work commuting.
High Speed Rail in Australia

France (TGV) 1981
High Speed Rail in Australia

France (TGV) - Key Historical National Priorities

- Reduce energy consumption;
- Lessen dependence on imported oil;
- Solve lack of capacity between Paris and Lyon;
- Create an export technology.
High Speed Rail in Australia

Germany (ICE) 1991
Germany (ICE) 1991

- Key Historical National Priorities

- Fast Services for Passengers and Freight;
- Land bridging between Eastern and Western Europe;
- Create an integrated capacity in internal mobility and cross border trade;
- Reunification of East and West Germany.
And now?

China’s Harmony Express

- Guangzhou (10.33 million) to Wuhan (8.97 million);
- terminus to terminus 1023km;
- two 8-car trains each way - non-stop time 3hr8min;
- Average speed 326 km/h;
- limited stop trains - 3 hr42mins to 3hr 56mins;
- fastest top speed in the world of 394km/h.
High Speed Rail in Australia

And now China - Key National Reasons

- To Increase the rail capacity by separating passenger and freight lines;
- Promote regional development;
- Raise current technology standards, catalyze innovation in its industry, export these technologies;
- National integration through the compression of time and space.

Source: Karl Fung Research, 2010
The Central People’s Government of the People’s Republic of China (2005), ‘Mid-to-Long Term Railway Development Plan’
High Speed Rail in Australia

China’s Big National Reasons

- To increase the rail capacity by separating passenger and freight lines;
- Promote regional development;
- Raise current technology standards, catalyze innovation in its industry, export these technologies;
- National integration through the compression of time and space.

- 2010 - 7531 kms HSR operational;
- 2010 - 10,000 kms under construction;
- 2012 - 13,000 kms of HSR operational
- 2020 – 16,000 kms and 90% of population
China’s Achievements

- Guangzhou (10.33 million) to Wuhan (8.97 million);
- Terminus to terminus = 1023 km;
- Two 8-car trains each way - non-stop time 3 hr 8 min;
- Average speed 326 km/h;
- Limited stop trains - 3 hr 42 mins to 3 hr 56 mins;
- Fastest top speed in the world of 394 km/h.
High Speed Rail in Australia

7th World Congress, Beijing

©Peter Thornton
High Speed Rail in Australia

Beijing South Station and Onboard CRH 380

©Peter Thornton
High Speed Rail in Australia

Running at 350 km/h

©Peter Thornton
High Speed Rail in Australia

It’s not about the technology

Source: Peter Thornton

©Peter Thornton

Transportation Associates
So what are the Australian BIG NATIONAL GOALS?

Which justify investing massive taxpayer funds into an HSR system???
High Speed Rail in Australia

East Coast Population Centres

- Brisbane 2,000,000
- Gold Coast Tweed 580,000
- Coffs Harbour 52,000
- Port Macquarie 43,000
- Newcastle 540,000
- Sydney 4,500,000
- Wollongong 280,000

Cities/Towns 1996 Population
(Population >=5,000)

Source: ECVHST Study 2001 and Wikipedia
The World Bank “High Speed Rail: The Fast Track to Economic Development?” July 2010

Lobbying by States “South Australia should sit up, take notice and claim a seat at the table of the federal inquiry into high-speed rail”

Lobbying by cities and towns – The Illawarra Mercury collected 70,000 signatures in support of HST going via Wollongong in the ’90s;

“Shepparton left behind as report shows faster rate of growth for cities with VLocity trains”

“The indirect effects of a high speed line do not appear automatically,” Prof E Quinet.
High Speed Rail in Australia

East Coast Geographic Realities

Sydney – Brisbane Coastal Corridor
770 kms (Actual rail distance 988 kms)

Sydney – Newcastle Corridor
117 kms (Actual rail distance 168 kms)

Sydney – Canberra corridor
250 kms (Actual rail distance 330 kms)

Sydney – Melbourne Inland corridor
730 kms (Actual rail distance 963 kms)

Same as:
Beijing to Shanghai; or Brussels to Madrid; or Sapporo to Hakata; or New York to Jacksonville (FA)

Source: ECVHST Study 2001
High Speed Rail in Australia

Australia In Perspective - Scale

Source: UIC

©Peter Thornton
High Speed Rail in Australia

Australia in Perspective - World’s Flattest Continent?

Comparison of Fast Train Route Alignments

Source: PB Thornton Research 2001
High Speed Rail in Australia

How fast is fast enough?

http://www.copyright-free-photos.org.uk/aircraft/5-BA-Concorde.htm

©Peter Thornton
Travel Time as a Function of Upgrade Cost
Sydney Canberra ~ 250 kms

- **Existing Service 145 km/h Diesel**
- **200-250 km/h Tilting Trains**
- **350 km/h "TGV" type Trains**
- **500 km/h Maglev**

Upgrade Cost $ billions

Source: Press reports
Patronage as a function of Travel Time

- Paradigm Shift in patronage starts at about 2 - 2.5 hours.
- Slow growth initially as transit time reduces.
- Fall off in patronage growth at less than 1.5 hours.

Source: Capital Rail Research
Sydney – Canberra
Investment Sweet Spot?

Source: Capital Rail 1998

Travel Time as a Function of Upgrade Cost

- Insufficient investment to generate patronage
- Paradigm shift in patronage
- Diminishing patronage for rapidly increasing investment
- Investment Target Zone ???

Patronage in Millions

Upgrade Cost $ billions

Travel Time by Rail in Hours

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

0
1
2
3
4
5
6

©Peter Thornton
Transportation Associates
High Speed Rail in Australia

A model for an Australian HST?

Mega city

Regional Growth Centre
Urban Growth Centre
Urban Growth Centre
Regional Growth Centre
Regional city

A City Traversing System

Regional city

A Few Journey Possibilities
High Speed Rail in Australia

Elements of An Australian HST

- Where first?
- Who owns;
- Who pays;
- Who delivers;
- Who operates and maintains?

©Peter Thornton
High Speed Rail in Australia

Newcastle to Sydney and then Canberra?

© Peter Thornton
High Speed Rail in Australia

Canberra – which way next?

20 year old corridor reserved for VFT

To Sydney

To Melbourne

© Peter Thornton

Transportation Associates
Unified Plan;
Deliverable in commercial stages;
One technical Specification;
COTS Technology
Common operating systems
One operator?

Delivery Staging for An Australian HST

- Stage 1a
- Stage 1b
- Stage 2a - North
- Stage 2b - North
- Stage 3 - North
- Stage 3 - South
- Sydney
- Canberra
- Melbourne
- Geelong
- Albury/Wodonga
- Sunshine Coast
- Gold Coast/Tweed Shire
- Newcastle
- Brisbane

©Peter Thornton
High Speed Rail in Australia

Case Study – Sydney - Newcastle

Newcastle
- Regional population 0.54 million
- Largest coal export port in the world

Sydney
- Metropolitan population 4.5 million
- Largest city in Australia

CBD to CBD

Rail - 168 kms 2hrs 45mins ($15.60 rtn);
Road - 164 kms; 2hrs 20mins
Air - 45mins plus 56mins ground access; ($166 rtn);

As the crow flies = 117 kms
Bijing - Tianjin = 120 kms in 30 minutes

Source: Hamilton Lund & Tourism NSW

© Peter Thornton
Case Study – Sydney - Newcastle

- 27 km Hawkdev tunnel proposal
- Max Altitude ~215m
- Cowan Bank 1:40
- Max Altitude ~215m

Diagram courtesy of my colleague Alex Wardrop

Transportation Associates

© Peter Thornton
High Speed Rail in Australia

Case Study – Sydney - Newcastle

All stops Inner Suburban
Tight curves / steep grades

Limited stops Outer Suburban
Urban environment

Limited Stops Interurban
Many stations

Bulk materials
Level crossings

Long Distance passenger
160km/h diesel hauled

Intermodal/General Freight
Old locos back in service

All photos Courtesy of my colleague Alex Wardop

©Peter Thornton
High Speed Rail in Australia

Case Study – Sydney - Newcastle

Source: Department of Planning
New South Wales State and Regional Population Projections: 2008 Release

- Sydney (4.5 million)
- Everywhere except Sydney, Newcastle and Wollongong (1.54 million)
- Newcastle (0.54 million)
- Wollongong (0.29 million)
High Speed Rail in Australia

Case Study – Sydney - Newcastle

Central Coast by 2031

- 100,000 more people to +400,000
- But >65 yr olds >24%
- 56,000 new jobs
- 7 town centres, 1 regional city – Gosford
- No new transport corridors currently
- 25% commuting out
- Any commuting in?
- Will they pay a commercial fare???

© Peter Thornton

Transportation Associates
High Speed Rail in Australia

Case Study – Sydney - Newcastle

- Part of heaviest freight and commuter corridor in Australia
- Multiuser Corridor: 4 basic sectors;
 - Passengers – ~ 36000 all day e/w
 - Freight – Practical capacity 16 paths per day e/w; Excluded from passenger peak hours;
 - 168 kms long; 1 in 40 grades;
 - Minimum Curvature 240 m;
 - 8 tunnels - 3.8 km in length
 - 1500V dc electrified;
 - Mostly double track with short sections of triple and quad;
 - 52 Stations.
Case Study – Sydney - Newcastle

Diagram courtesy of my colleague Alex Wardrop

© Peter Thornton Transportation Associates
High Speed Rail in Australia

Case Study – Sydney - Newcastle

Source: Tourism NSW

© Peter Thornton Transportation Associates
High Speed Rail in Australia

Case Study – Sydney - Newcastle

Source: Hamilton Lund & Tourism NSW
High Speed Rail in Australia

Case Study – Sydney - Newcastle

- “A new paradigm of urban development, mobility and transportation connectivity” – changing the way we live;
- Demographic trends –corridor population increasing;
- Rail Freight set to grow “explosively”;
- Peak Passenger rail demand high and increasing;
- Rail corridor capacity issues and upgrade costs;
- Newcastle Freeway also reaching peak hour capacity;
- Airport connectivity & capacity constraints;
- Sustainable transport – Energy, Safety, “Value for money travel”.

Speed/time records
“On the 28 June 1964, 3801 was specially booked to run the Newcastle Flyer in an attempt to run non-stop from Sydney to Newcastle in under 2 hours time ……a new record of 2 hours, 1 minute and 51 seconds was posted by the class leader. This is a record that remains unbroken by any other steam locomotive.”
http://en.wikipedia.org/wiki/Newcastle_Flyer
Phase 2 HSR Study Conclusions

- 1748 kms dedicated route – Melb-Can-Syd-Bris; 20 stations;
- Mix of express and limited stops services;
- Connectivity to other transport systems;
- 2012 $ 114 billion - Melb-Syd $50b; Syd-Bris $64b;
- 46m -111m pax intercity & regional trips central forecast - 83.6m pax pa; 40% of the intercity air travel market; Syd – Mel 19 m pax pa
- Staging – Syd- Can; Can- Mel; Syd- New; Bris-Gold; Gold- New; Syd-Mel = operational by 2035?
- Govt required to fund upfront infrastructure costs;
- Funding gap of 86% if commercial funding maximized;
- If pax forecast achieved, above rail operation self funding – if fares comparable to airfares
- Economic BCR 2.3 to 2.5 at 4% discount rate
- FIRR 0.8 – 1. and EIRR 7.8%
High Speed Rail in Australia

So where are we at?

- Government commitment; ✓
- New HSR Study Completed ✓
- Confirm “Big National Reasons”; ?
- Successful 1st Stage; ?
- Define next stages of an East Coast HST; ?
- Corridors reservations now - city entries and exits; ?
- Create defendable zonings; ?
- Create an HSR business NOT an HSR construction project; ?
- "the big difference between Spain and other European countries is that the others plan services while we just plan spending."

Http://www.Coshoctontribune.Com/article/20110206/OPINION02/102060311/1014/OPINION/the-spanish-example-warning
High Speed Rail in Australia

Keeping an open mind on the subject

© Peter Thornton
High Speed Rail in Australia

Is there light at the end of the HSR tunnel?!